Example Selector
Bases: BaseExampleSelector
, BaseModel
Example selector to handle the case of fixed few-shot context i.e. every input prompt to the labeling model has the same few-shot examples
Source code in autolabel/src/autolabel/few_shot/fixed_example_selector.py
examples: List[dict]
instance-attribute
¶
A list of the examples that the prompt template expects.
k: int = 4
class-attribute
instance-attribute
¶
Number of examples to select
Config
¶
from_examples(examples, k=4)
classmethod
¶
Create pass-through example selector using example list
Returns:
Type | Description |
---|---|
FixedExampleSelector
|
The FixedExampleSelector instantiated |
Source code in autolabel/src/autolabel/few_shot/fixed_example_selector.py
select_examples(input_variables, **kwargs)
¶
Select which examples to use based on the input lengths.
Source code in autolabel/src/autolabel/few_shot/fixed_example_selector.py
VectorStoreWrapper
¶
Bases: VectorStore
Source code in autolabel/src/autolabel/few_shot/vector_store.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
add_texts(texts, metadatas=None)
¶
Run texts through the embeddings and add to the vectorstore. Currently, the vectorstore is reinitialized each time, because we do not require a persistent vector store for example selection. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. Returns: List[str]: List of IDs of the added texts.
Source code in autolabel/src/autolabel/few_shot/vector_store.py
from_texts(texts, embedding=None, metadatas=None, cache=True, **kwargs)
classmethod
¶
Create a vectorstore from raw text. The data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. cache (bool): Whether to cache the embeddings. Defaults to True. Returns: vector_store: Vectorstore with seedset embeddings
Source code in autolabel/src/autolabel/few_shot/vector_store.py
label_diversity_similarity_search(query, label_key, k=4, filter=None, **kwargs)
¶
Run semantic similarity search. Args: query (str): Query text to search for. k (int): Number of results to return per label. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text.
Source code in autolabel/src/autolabel/few_shot/vector_store.py
label_diversity_similarity_search_with_score(query, label_key, k=4, filter=None, **kwargs)
¶
Run semantic similarity search and retrieve distances. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float.
Source code in autolabel/src/autolabel/few_shot/vector_store.py
similarity_search(query, k=4, filter=None, **kwargs)
¶
Run semantic similarity search. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text.
Source code in autolabel/src/autolabel/few_shot/vector_store.py
similarity_search_with_score(query, k=4, filter=None, **kwargs)
¶
Run semantic similarity search and retrieve distances. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float.
Source code in autolabel/src/autolabel/few_shot/vector_store.py
cos_sim(a, b)
¶
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j. Returns: cos_sim: Matrix with res(i)(j) = cos_sim(a[i], b[j])
Source code in autolabel/src/autolabel/few_shot/vector_store.py
semantic_search(query_embeddings, corpus_embeddings, query_chunk_size=100, corpus_chunk_size=500000, top_k=10, score_function=cos_sim)
¶
Semantic similarity search based on cosine similarity score. Implementation from this project: https://github.com/UKPLab/sentence-transformers