Config
BaseConfig
¶
Used for parsing, validating, and storing information about the labeling task passed to the LabelingAgent. Additional config classes should extend from this base class.
Source code in autolabel/src/autolabel/configs/base.py
AutolabelConfig
¶
Bases: BaseConfig
Class to parse and store configs passed to Autolabel agent.
Source code in autolabel/src/autolabel/configs/config.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
attributes()
¶
chain_of_thought()
¶
Returns true if the model is able to perform chain of thought reasoning.
confidence()
¶
Returns true if the model is able to return a confidence score along with its predictions
confidence_chunk_column()
¶
confidence_chunk_size()
¶
confidence_merge_function()
¶
Returns the function to use when merging confidence scores
dataset_generation_guidelines()
¶
Returns a string containing guidelines for how to generate a synthetic dataset
dataset_generation_num_rows()
¶
Returns the number of rows to generate for the synthetic dataset
delimiter()
¶
Returns the token used to seperate cells in the dataset. Defaults to a comma ','
disable_quoting()
¶
embedding_model_name()
¶
Returns the name of the model being used for computing embeddings (e.g. sentence-transformers/all-mpnet-base-v2)
embedding_provider()
¶
Returns the name of the entity that provides the model used for computing embeddings
example_template()
¶
Returns a string containing a template for how examples will be formatted in the prompt
Source code in autolabel/src/autolabel/configs/config.py
explanation_column()
¶
Returns the name of the column containing an explanation as to why the data is labeled a certain way
few_shot_algorithm()
¶
Returns which algorithm is being used to construct the set of examples being given to the model about the labeling task
Source code in autolabel/src/autolabel/configs/config.py
few_shot_example_set()
¶
Returns examples of how data should be labeled, used to guide context to the model about the task it is performing
Source code in autolabel/src/autolabel/configs/config.py
few_shot_num_examples()
¶
Returns how many examples should be given to the model in its instruction prompt
image_column()
¶
Returns the name of the column containing an image url for the given item
input_columns()
¶
Returns the names of the input columns from the dataset that are used in the prompt
json_mode()
¶
Returns true if the model should be used in json mode. Currently only used for OpenAI models.
label_column()
¶
Returns the name of the column containing labels for the dataset. Used for comparing accuracy of autolabel results vs ground truth
label_descriptions()
¶
Returns a dict of label descriptions
Source code in autolabel/src/autolabel/configs/config.py
label_selection()
¶
Returns true if label selection is enabled. Label selection is the process of narrowing down the list of possible labels by similarity to a given input. Useful for classification tasks with a large number of possible classes.
Source code in autolabel/src/autolabel/configs/config.py
label_selection_threshold()
¶
Returns the threshold for label selection in LabelSelector If the similarity score ratio with the top Score is above this threshold, the label is selected.
Source code in autolabel/src/autolabel/configs/config.py
label_separator()
¶
Returns the token used to seperate multiple labels in the dataset. Defaults to a semicolon ';'
labels_list()
¶
Returns a list of valid labels
Source code in autolabel/src/autolabel/configs/config.py
logit_bias()
¶
max_selected_labels()
¶
Returns the number of labels to select in LabelSelector
model_name()
¶
Returns the name of the model being used for labeling (e.g. gpt-4, claude-v1)
model_params()
¶
Returns a dict of configured settings for the model (e.g. hyperparameters)
provider()
¶
Returns the name of the entity that provides the currently configured model (e.g. OpenAI, Anthropic, Refuel)
task_type()
¶
Returns the type of task we have configured the labeler to perform (e.g. Classification, Question Answering)
text_column()
¶
Returns the name of the column containing text data we intend to label
transforms()
¶
Returns a list of transforms to apply to the data before sending to the model.